Refine Your Search

Topic

Search Results

Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2012-05-09
HISTORICAL
AS1145B
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

USAF Aircraft Wheels

2012-05-09
HISTORICAL
AIR4012B
This SAE Aerospace Information Report (AIR) documents general technical data associated with many of the wheels used in the Air Force.
Standard

Maintainability Recommendations for Aircraft Wheel and Brake Design

2010-06-25
HISTORICAL
ARP813B
This SAE Aerospace Recommended Practice (ARP) recommends the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on other factors, such as, cost, weight, reliability, and compatibility with other systems should be weighed before the incorporation of any of these maintainability features into the design.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2009-05-13
HISTORICAL
AIR5567
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
Standard

Aircraft Tire Inflation-Deflation Equipment

2008-06-16
HISTORICAL
AS1188
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
Standard

SKID CONTROL SYSTEM VIBRATION SURVEY

2008-06-16
HISTORICAL
AIR764C
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
Standard

Skid Control Equipment

2007-12-12
HISTORICAL
AS483B
This standard covers minimum requirements for skid control equipment for use on all types and models of civil aircraft. It shall be the responsibility of the applicant to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Overpressurization Release Devices

2007-08-09
HISTORICAL
ARP1322A
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and test recommendations for aircraft tubeless tire and wheel overpressurization release devices to protect from possible explosive failure of the contained air chamber due to overinflation. This device will not protect against flash fire explosive conditions within the air chamber which may occur due to extremely overheated brakes. To protect against this condition, nitrogen or other inert gas should be used for inflation.
Standard

Automatic Braking Systems Requirements

2006-10-26
HISTORICAL
ARP1907A
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2006-10-26
HISTORICAL
ARP1070B
This document covers the general requirements for aircraft skid control systems and their components. Methods of defining skid control system performance criteria for design and evaluation purposes are outlined and recommended. Design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, are covered in detail. Recommended methods for measuring performance of a skid control system are included.
Standard

Minimum Performance Recommendations for Part 23, 27, and 29 Aircraft Wheels, Brakes, and Wheel and Brake Assemblies

2006-03-17
HISTORICAL
ARP5381
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
Standard

MAINTAINABILITY RECOMMENDATIONS FOR AIRCRAFT WHEELS & BRAKES

1993-04-01
HISTORICAL
ARP813
This document suggests the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on such factors as cost, weight, reliability, and compatibility with other systems should be considered before incorporation of any of these features in the design.
Standard

MAINTAINABILITY RECOMMENDATIONS FOR AIRCRAFT WHEELS AND BRAKES

1993-04-01
HISTORICAL
ARP813A
This ARP suggests the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on such factors as cost, weight, reliability, and compatibility with other systems should be considered before incorporation of any of these features in the design.
Standard

AUTOMATIC BRAKING SYSTEMS REQUIREMENTS

1993-04-01
HISTORICAL
ARP1907
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

AIRCRAFT BRAKE TEMPERATURE MONITOR SYSTEMS (BTMS)

1992-06-01
HISTORICAL
AS1145A
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

DESIGN OF SKID CONTROL & ASSOCIATED AIRCRAFT EQUIPMENT FOR TOTAL SYSTEM COMPATIBILITY

1982-04-01
HISTORICAL
ARP1070A
This document covers the general requirements for aircraft skid control systems and their components. Methods of defining skid control system performance criteria for design and evaluation purposes are outlined and recommended. Design and operational goals, general theory, and functions, which must be considered by the aircraft brake systems engineer to attain the most effective skid control performance, are covered in detail. Recommended methods for measuring performance of skid control systems are included.
Standard

SKID CONTROL EQUIPMENT

1975-01-15
HISTORICAL
AS483A
This standard covers minimum requirements for skid control equipment for use on all types and models of civil aircraft. It shall be the responsibility of the applicant to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

OVERPRESSURIZATION RELEASE DEVICES

1975-01-01
HISTORICAL
ARP1322
This ARP specifies the minimum design and test recommendations for aircraft tubeless tire and wheel overpressurization release devices to protect from possible explosive failure of the contained air chamber due to overinflation. This device will not protect against flash fire explosive conditions within the air chamber which may occur due to extremely overheated brakes. To protect against this condition, nitrogen or other inert gas should be used for inflation.
X